Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Dimethylpiperazine-1,4-diium dibromide dihydrate

Su-Wen Sun

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
Correspondence e-mail: sunsuwen_5127@163.com

Received 25 April 2012; accepted 5 May 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.059 ; w R$ factor $=0.169$; data-to-parameter ratio $=21.4$.

In the title hydrated molecular salt, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the complete 1,4-dimethylpiperazine-1,4-diium dication is generated by crystallographic inversion symmetry and both exocyclic $\mathrm{C}-\mathrm{N}$ bonds are in equatorial orientations. In the crystal, the components are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, generating chains propagating in [110].

Related literature

For background to molecular ferroelectrics, see: Fu et al. (2009).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad M_{r}=312.06$

Triclinic, $P \overline{1}$
$a=6.2975$ (13) \AA
$b=7.0180(14) \AA$
$c=7.2143(14) \AA$
$\alpha=71.54$ (3) ${ }^{\circ}$
$\beta=86.62$ (3) ${ }^{\circ}$
$\gamma=85.54(3)^{\circ}$

Data collection

Rigaku SCXmini CCD

 diffractometerAbsorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.154, T_{\text {max }}=0.262$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.169$
$S=1.02$
1370 reflections
64 parameters
$V=301.32(10) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=6.70 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

3 restraints

3084 measured reflections 1370 independent reflections 1131 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.067$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.80 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.12 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.91	1.83	$2.737(9)$	174
$\mathrm{O} 1-\mathrm{H} 1 W A \cdots \mathrm{Br} 1^{\mathrm{ii}}$	$0.85(6)$	$2.51(9)$	$3.275(7)$	$151(11)$
$\mathrm{O} 1-\mathrm{H} 1 W B \cdots \mathrm{Br} 1$	$0.85(3)$	$2.41(4)$	$3.244(7)$	$166(7)$

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1,-y,-z+1$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6759).

References

Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. \& Qu, Z.-R. (2009). Inorg. Chem. Comтии. 12, 994-997.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan . Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o1703 [doi:10.1107/S1600536812020272]

1,4-Dimethylpiperazine-1,4-diium dibromide dihydrate

Su-Wen Sun

Comment

Dielectric constant measurements of compounds as a function of temperature is the basic methods to find the materials which possess potential ferroelectric phase changes (Fu et al., 2009). The dielectric constant of the title compound has been measured, but showed no dielectric disuniformity in the range $113-353 \mathrm{~K}(\mathrm{mp} .403-410 \mathrm{~K})$.
The asymmetric unit of the title compound is shown in Fig. 1. crystallized in the monoclinic P-1 space group, The crystal packing Fig. 2 features weak intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1).

Experimental

1,4-Dimethyl-piperazine $(0.57 \mathrm{~g})$ and an excess of hydrobromic acid $(0.95 \mathrm{~g})$ were dissolved in methanol without any precipitation under stirring at room temperature. Colourless blocks of the title compound were obtained by slow evaporation of a methanol solution at room temperature over two days.

Refinement

H atoms were placed in calculated positions ($\mathrm{N}-\mathrm{H}=0.89 \AA ; \mathrm{C}-\mathrm{H}=0.96 \AA$ and $0.97 \AA$ for $\mathrm{Csp}{ }^{3}$ atoms), assigned fixed $U_{\text {iso }}$ values $\left[1.5 \mathrm{Ueq}\left(\mathrm{Csp}^{3}, N\right)\right]$ and allowed to ride. The H 1 WA and H 1 WB on the O 1 were restrained with $\mathrm{O}-\mathrm{H}=0.85 \AA$ yielding $\mathrm{O} 1-\mathrm{H} 1=0.8448 \AA$ and $\mathrm{O} 1-\mathrm{H} 2=0.8440 \AA$, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{iso}}(\mathrm{O})$.

Computing details

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
The molecular structure of the title compound with 30% probability displacement ellipsoids.

Figure 2
A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

1,4-Dimethylpiperazine-1,4-diium dibromide dihydrate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=312.06$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.2975$ (13) \AA
$b=7.0180(14) \AA$
$c=7.2143(14) \AA$
$\alpha=71.54(3)^{\circ}$
$\beta=86.62(3)^{\circ}$
$\gamma=85.54(3)^{\circ}$

Data collection

Rigaku SCXmini CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 13.6612 pixels mm^{-1}
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.154, T_{\text {max }}=0.262$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.169$
$S=1.02$
1370 reflections
64 parameters
3 restraints

$$
\begin{aligned}
& V=301.32(10) \AA^{3} \\
& Z=1 \\
& F(000)=156 \\
& D_{\mathrm{x}}=1.720 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \theta=3.1-27.5^{\circ} \\
& \mu=6.70 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.30 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

3084 measured reflections
1370 independent reflections
1131 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-8 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

supplementary materials

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0897 P)^{2}+0.3362 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.024
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.80 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.12 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.0403(8)$	$0.3473(7)$	$0.6882(7)$	$0.0319(11)$
H1A	-0.0362	0.2477	0.6754	0.038^{*}
C2	$-0.1103(10)$	$0.5311(10)$	$0.6709(9)$	$0.0355(13)$
H2A	-0.2225	0.4973	0.7717	0.043^{*}
H2B	-0.0331	0.6371	0.6904	0.043^{*}
C3	$0.2067(9)$	$0.3955(10)$	$0.5259(9)$	$0.0346(13)$
H3A	0.2991	0.2759	0.5350	0.042^{*}
H3B	0.2934	0.4979	0.5406	0.042^{*}
C1	$0.1381(11)$	$0.2748(10)$	$0.8819(10)$	$0.0428(15)$
H1B	0.2564	0.1808	0.8788	0.064^{*}
H1C	0.0342	0.2098	0.9796	0.064^{*}
H1D	0.1872	0.3869	0.9129	0.064^{*}
Br1	$0.61718(10)$	$0.21220(10)$	$0.19573(10)$	$0.0445(3)$
O1	$0.7864(11)$	$0.0695(11)$	$0.6378(10)$	$0.0737(19)$
H1WA	$0.675(9)$	$0.027(18)$	$0.707(10)$	$0.11(5)^{*}$
H1WB	$0.757(12)$	$0.090(12)$	$0.519(4)$	$0.05(2)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.035(3)$	$0.031(2)$	$0.028(3)$	$-0.003(2)$	$-0.002(2)$	$-0.007(2)$
C2	$0.037(3)$	$0.043(3)$	$0.027(3)$	$0.001(3)$	$0.002(2)$	$-0.012(3)$
C3	$0.031(3)$	$0.041(3)$	$0.031(3)$	$0.003(2)$	$-0.001(2)$	$-0.013(3)$
C1	$0.056(4)$	$0.043(4)$	$0.028(3)$	$0.000(3)$	$-0.010(3)$	$-0.008(3)$
Br1	$0.0393(4)$	$0.0481(5)$	$0.0451(5)$	$-0.0090(3)$	$-0.0021(3)$	$-0.0116(3)$
O1	$0.080(4)$	$0.084(4)$	$0.055(4)$	$-0.048(4)$	$-0.012(3)$	$-0.007(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 1$	$1.482(8)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 3$	$1.498(8)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 2$	$1.516(8)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9600
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$	0.9100	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{C} 3^{\mathrm{i}}$	$1.497(9)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	0.9600

C2-H2A	0.9700	O1-H1WA	0.853 (10)
C2-H2B	0.9700	O1-H1WB	0.854 (10)
C3-C2 ${ }^{\text {i }}$	1.497 (9)		
C1-N1-C3	111.3 (5)	N1-C3-H3A	109.2
C1-N1-C2	111.1 (5)	C2- ${ }^{\text {i }} 3-\mathrm{H} 3 \mathrm{~A}$	109.2
C3-N1-C2	109.7 (5)	N1-C3-H3B	109.2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	108.2	C2 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.2
C3-N1-H1A	108.2	H3A-C3-H3B	107.9
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	108.2	N1-C1-H1B	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	110.7 (5)	N1-C1-H1C	109.5
C 3 - $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
N1-C2-H2A	109.5	N1-C1-H1D	109.5
$\mathrm{C} 3{ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	H1B-C1-H1D	109.5
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1	H1WA-O1-H1WB	107 (3)
N1-C3-C2 ${ }^{\text {i }}$	111.9 (5)		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$	179.4 (5)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$	180.0 (5)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	56.0 (7)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$	-56.7 (7)

Symmetry code: (i) $-x,-y+1,-z+1$.
Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.91	1.83	$2.737(9)$	174
$\mathrm{O} 1 — \mathrm{H} 1 W A \cdots \mathrm{Br} 1^{\mathrm{iii}}$	$0.85(6)$	$2.51(9)$	$3.275(7)$	$151(11)$
$\mathrm{O} 1 — \mathrm{H} 1 W B \cdots \mathrm{Br} 1$	$0.85(3)$	$2.41(4)$	$3.244(7)$	$166(7)$

Symmetry codes: (ii) $x-1, y, z$; (iii) $-x+1,-y,-z+1$.

